万博体育官网,万博体育平台

您所在的位置: 首页 / 讲座报告

07月05日15:00 Yuhong Yang:Optimal On-Line Treatment Allocations For Personalized Medicine (Recommendation, Advertisement or Policy)

讲座编号:jz-yjsb-2019-y048

讲座题目:Optimal On-Line Treatment Allocations For Personalize Medicin(Recommendation, Advertisement or Policy)

主 讲 人:Yuhong Yang  School of Statistics University of Minnesota

讲座时间:20190705日(星期五)下午15:00

讲座地点:阜成路西校区综合楼1116

参加对象:数学与统计学院教师、研究生

主办单位:研究生院

承办单位:数学与统计学院

主讲人简介:

Yuhong Yang  received his Ph.D from Yale in statistics in 1996. He then joined Department of Statistics at Iowa State University and moved to the University of Minnesota in 2004. He has been full professor there since 2007. His research interests include model selection, multi-armed bandit problems, forecasting, high-dimensional data analysis, and machine learning. He has published in top journals in several fields, including Annals of Statistics, JASA, JRSSB, Biometrika, IEEE Transaction on Information Theory, Journal of Econometrics, Proceedings of AMS, Journal of Machine Leaning Research, and International Journal of Forecasting. He is a fellow of Institute of Mathematical Statistics and was a recipient of the US NSF CAREER Award.

主讲内容:

 In practice of medicine (as an example), multiple treatments are often available to treat individual patients. The task of identifying the best treatment for a specific patient is very challenging due to patient inhomogeneity. Multi-armed bandit with covariates provides a framework for designing effective treatment allocation rules in a way that integrates the learning from experimentation with maximizing the benefits to the patients along the process.

In this talk, we present new strategies to achieve asymptotically efficient or minimax optimal treatment allocations. Since many nonparametric and parametric methods in supervised learning may be applied to estimating the mean treatment outcome functions (in terms of the covariates) but guidance on how to choose among them is generally unavailable, we propose a model combining allocation strategy for adaptive performance and show its strong consistency. When the mean treatment outcome functions are smooth, rates of convergence can be studied to quantify the effectiveness of a treatment allocation rule in terms of the overall benefits the patients have received.  A multi-stage randomized allocation with arm elimination algorithm is proposed to combine the flexibility in treatment outcome function modeling and a theoretical guarantee of the overall treatment benefits. Numerical results are given to demonstrate the performance of the new strategies. The talk is based on joint work with Wei Qian.